CRAN Package Check Results for Package UMR

Last updated on 2023-10-16 07:13:32 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1.0 5.24 57.19 62.43 ERROR
r-devel-linux-x86_64-debian-gcc 1.1.0 3.42 43.51 46.93 ERROR
r-devel-linux-x86_64-fedora-clang 1.1.0 82.28 ERROR
r-devel-linux-x86_64-fedora-gcc 1.1.0 76.15 ERROR
r-devel-windows-x86_64 1.1.0 6.00 64.00 70.00 ERROR
r-patched-linux-x86_64 1.1.0 7.54 55.57 63.11 ERROR
r-release-linux-x86_64 1.1.0 ERROR
r-release-macos-arm64 1.1.0 27.00 OK
r-release-macos-x86_64 1.1.0 41.00 OK
r-release-windows-x86_64 1.1.0 6.00 71.00 77.00 ERROR
r-oldrel-macos-arm64 1.1.0 26.00 OK
r-oldrel-macos-x86_64 1.1.0 36.00 OK
r-oldrel-windows-x86_64 1.1.0 9.00 74.00 83.00 ERROR

Check Details

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-13-10:23:51.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-15-18:37:55.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-07-11:12:13.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-08-00:40:35.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in 'UMR-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-14-09:24:18.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-devel-windows-x86_64

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-11-17:07:35.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-patched-linux-x86_64

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘UMR-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-15-04:44:06.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-release-linux-x86_64

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in 'UMR-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-15-18:16:10.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-release-windows-x86_64

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in 'UMR-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: UMRgradDesc
    > ### Title: Basic gradient descent implementation
    > ### Aliases: UMRgradDesc gradDesc
    >
    > ### ** Examples
    >
    >
    >
    > #### Set up the gradient function
    > mysig <- 1 ## std dev
    > errdist <- distr::Norm(0, sd=mysig)
    > modeldistname <- truedistname <- "Gauss" ## used for savefile name
    > mm0 <- function(xx){xx}
    > nn <- 300
    > xx <- sort(runif(n=nn, 0, 7))
    > yy <- mm0(xx) + errdist@r(nn)
    > ## plot(xx,yy)
    >
    > myScale <- mysig
    >
    > AAfunc_Gauss <- purrr::partial(AAfunc_Gauss_generic, sig=!!mysig)
    > AA_Gauss <- purrr::partial(AA, func=!!AAfunc_Gauss)
    > BBfunc_Gauss <- purrr::partial(BBfunc_Gauss_generic, sig=!!mysig)
    > BB_Gauss <- purrr::partial(BB, func=!!BBfunc_Gauss)
    > mygradSIR <-
    + grad_SIR_Gauss <- ## just for ease of reference
    + purrr::partial(grad_SIR_generic,
    + rescale=TRUE, ## factor of nn/2
    + AAfunc=!!AA_Gauss, BBfunc=!!BB_Gauss)
    >
    > ## Now run the gradient descent
    > savefilenameUnique <- paste("graddesc_", modeldistname, "_", truedistname,
    + "_n", nn,
    + "_", format(Sys.time(), "%Y-%m-%d-%T"), ".rsav", sep="")
    > print(paste("The unique save file name for this run is", savefilenameUnique))
    [1] "The unique save file name for this run is graddesc_Gauss_Gauss_n300_2023-10-13-14:25:56.rsav"
    > stepsize <- nn^(1/2) ## Has to be tuned
    > MM <- 100 ## Total number iterations is MM * JJ
    > JJ <- 2
    > eps <- (max(yy)-min(yy)) / (1000 * nn^(1/5) * myScale)
    > ## print *and* SAVE every 'printevery' iterations.
    > ## here no save occurs, printevery > MM
    > printevery <- 1000
    > init <- yy
    >
    > mmhat <- UMRgradDesc(yy=yy, grad=mygradSIR, ## from settings file
    + init=init,
    + stepsize=stepsize, MM=MM,
    + printevery=printevery,
    + filename=paste0("../saves/", savefilenameUnique))
    > #### some classical/matched [oracle] estimators
    > isoreg_std <- Iso::ufit(y=yy, x=xx, lmode=Inf)
    Error in Iso::ufit(y = yy, x = xx, lmode = Inf) :
     If "lmode" is specified, it must be an entry
     of "x" which defaults to seq(0,1,length=length(y)).
    Execution halted
Flavor: r-oldrel-windows-x86_64