Last updated on 2024-04-20 10:52:47 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1.1 | 2.52 | 32.31 | 34.83 | NOTE | |
r-devel-linux-x86_64-debian-gcc | 1.1.1 | 2.30 | 23.63 | 25.93 | NOTE | |
r-devel-linux-x86_64-fedora-clang | 1.1.1 | 43.83 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.1.1 | 40.53 | NOTE | |||
r-prerel-macos-arm64 | 1.1.1 | 18.00 | NOTE | |||
r-prerel-windows-x86_64 | 1.1.1 | 3.00 | 48.00 | 51.00 | NOTE | |
r-patched-linux-x86_64 | 1.1.1 | 3.56 | 31.02 | 34.58 | NOTE | |
r-release-linux-x86_64 | 1.1.1 | 2.47 | 31.00 | 33.47 | OK | |
r-release-macos-arm64 | 1.1.1 | 17.00 | OK | |||
r-release-macos-x86_64 | 1.1.1 | 24.00 | OK | |||
r-release-windows-x86_64 | 1.1.1 | 4.00 | 50.00 | 54.00 | OK | |
r-oldrel-macos-arm64 | 1.1.1 | 23.00 | OK | |||
r-oldrel-windows-x86_64 | 1.1.1 | 4.00 | 53.00 | 57.00 | OK |
Version: 1.1.1
Check: Rd files
Result: NOTE
checkRd: (-1) boundary_matrix.Rd:28: Lost braces; missing escapes or markup?
28 | This functions takes all words (or just the non-degenerate ones) of length $degree$ in the rack/biquandle (which are represented by $Z_k$) and then calculates their boundary via the following equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup?
29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:25: Lost braces; missing escapes or markup?
25 | This functions takes all degenerate words of length $degree$ in the rack/biquandle (which are represented by ${Z}_k$) and then calculates their boundary via the followi ng equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:25: Lost braces; missing escapes or markup?
25 | This functions takes all degenerate words of length $degree$ in the rack/biquandle (which are represented by ${Z}_k$) and then calculates their boundary via the followi ng equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup?
26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i.
| ^
checkRd: (-1) boundary_names.Rd:26: Lost braces; missing escapes or markup?
26 | This calculates all possible permutations of elements in $Z_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the degenerate ones (that is, those where $x_i=x_{i+1}$, for an element $x=(x_i)_0^{degree})$).
| ^
checkRd: (-1) boundary_names.Rd:26: Lost braces; missing escapes or markup?
26 | This calculates all possible permutations of elements in $Z_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the degenerate ones (that is, those where $x_i=x_{i+1}$, for an element $x=(x_i)_0^{degree})$).
| ^
checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup?
23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$).
| ^
checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup?
23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$).
| ^
checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup?
23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$).
| ^
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-prerel-macos-arm64, r-prerel-windows-x86_64, r-patched-linux-x86_64
Version: 1.1.1
Check: Rd contents
Result: NOTE
Auto-generated content requiring editing in Rd file 'quhomology-package.Rd':
\details: ‘...o use the package, including the most important functions ~~’
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-prerel-macos-arm64, r-prerel-windows-x86_64, r-patched-linux-x86_64