CRAN Package Check Results for Package ream

Last updated on 2024-09-14 09:48:30 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0-1 14.12 50.10 64.22 OK
r-devel-linux-x86_64-debian-gcc 1.0-1 9.54 36.85 46.39 OK
r-devel-linux-x86_64-fedora-clang 1.0-1 114.34 OK
r-devel-linux-x86_64-fedora-gcc 1.0-1 123.87 OK
r-devel-windows-x86_64 1.0-1 21.00 95.00 116.00 OK
r-patched-linux-x86_64 1.0-1 14.99 47.52 62.51 OK
r-release-linux-x86_64 1.0-1 13.58 47.48 61.06 OK
r-release-macos-arm64 1.0-1 43.00 ERROR
r-release-macos-x86_64 1.0-1 86.00 ERROR
r-release-windows-x86_64 1.0-1 24.00 97.00 121.00 OK
r-oldrel-macos-arm64 1.0-1 39.00 ERROR
r-oldrel-macos-x86_64 1.0-1 78.00 ERROR
r-oldrel-windows-x86_64 1.0-1 20.00 88.00 108.00 OK

Additional issues

clang-ASAN gcc-ASAN gcc-UBSAN M1mac

Check Details

Version: 1.0-1
Check: examples
Result: ERROR Running examples in ‘ream-Ex.R’ failed The error most likely occurred in: > ### Name: CDSTP > ### Title: Continuous Dual-Stage Two-Phase Model of Selective Attention > ### Aliases: CDSTP dCDSTP pCDSTP rCDSTP > > ### ** Examples > > # Probability density function > dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), + phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3, 0.0, 0.0, 1.0)) Flavors: r-release-macos-arm64, r-oldrel-macos-arm64

Version: 1.0-1
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘guidline.Rmd’ using rmarkdown DMC package:ream R Documentation _<08>D_<08>i_<08>f_<08>f_<08>u_<08>s_<08>i_<08>o_<08>n _<08>M_<08>o_<08>d_<08>e_<08>l _<08>f_<08>o_<08>r _<08>C_<08>o_<08>n_<08>f_<08>l_<08>i_<08>c_<08>t _<08>T_<08>a_<08>s_<08>k_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by v(x,t) = s*A*exp(-t/tau)*[e*t/(tau*(alpha-1))]^{alpha-1}*[(alpha-1)/t - 1/tau] + mu_c. _<08>U_<08>s_<08>a_<08>g_<08>e: dDMC(rt, resp, phi, x_res = "default", t_res = "default") pDMC(rt, resp, phi, x_res = "default", t_res = "default") rDMC(n, phi, dt = 1e-05) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: rt: vector of response times resp: vector of responses ("upper" and "lower") phi: parameter vector in the following order: 1. Non-decision time (t_{nd}). Time for non-decision processes such as stimulus encoding and response execution. Total decision time t is the sum of the decision and non-decision times. 2. Relative start (w). Sets the start point of accumulation as a ratio of the two decision thresholds. Related to the absolute start z point via equation z = b_l + w*(b_u - b_l). 3. Coherence parameter (s). Sets stimulus coherence. If s = 1, coherent condition; if s = 0, neutral condition; if s = -1, incoherent condition. 4. Automatic process amplitude (A). Max value of automatic process. 5. Scale parameter (tau). Contributes to time automatic process. Time to max t_{max} = (alpha – 1)*tau. 6. Shape parameter (alpha). Indicates the shape of the automatic process. Must have value more than 1 (alpha > 1). 7. Drift rate of the controlled process (mu_c). 8. Noise scale (sigma). Model noise scale parameter. 9. Decision thresholds (b). Sets the location of each decision threshold. The upper threshold b_u is above 0 and the lower threshold b_l is below 0 such that b_u = -b_l = b. The threshold separation a = 2b. 10. Contamination (g). Sets the strength of the contamination process. Contamination process is a uniform distribution f_c(t) where f_c(t) = 1/(g_u-g_l) if g_l <= t <= g_u and f_c(t) = 0 if t < g_l or t > g_u. It is combined with PDF f_i(t) to give the final combined distribution f_{i,c}(t) = g*f_c(t) + (1-g)*f_i(t), which is then output by the program. If g = 0, it just outputs f_i(t). 11. Lower bound of contamination distribution (g_l). See parameter g. 12. Upper bound of contamination distribution (g_u). See parameter g. x_res: spatial/evidence resolution t_res: time resolution n: number of samples dt: step size of time. We recommend 0.00001 (1e-5) _<08>V_<08>a_<08>l_<08>u_<08>e: For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp). _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Raphael Hartmann & Matthew Murrow _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. _Cognitive psychology, 78_, 148-174. _<08>E_<08>x_<08>a_<08>m_<08>p_<08>l_<08>e_<08>s: # Probability density function dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Cumulative distribution function pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Random sampling rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) Flavor: r-release-macos-arm64

Version: 1.0-1
Check: examples
Result: ERROR Running examples in ‘ream-Ex.R’ failed The error most likely occurred in: > ### Name: CDSTP > ### Title: Continuous Dual-Stage Two-Phase Model of Selective Attention > ### Aliases: CDSTP dCDSTP pCDSTP rCDSTP > > ### ** Examples > > # Probability density function > dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), + phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3, 0.0, 0.0, 1.0)) *** caught illegal operation *** address 0x10e7c67c4, cause 'illegal opcode' Traceback: 1: dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, 0.5, -0.5, -1, -0.5, 8, 4, 1, 2, 1.3, 1.3, 0, 0, 1)) An irrecoverable exception occurred. R is aborting now ... Flavor: r-release-macos-x86_64

Version: 1.0-1
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: Error in readRDS(file) : error reading from connection --- re-building ‘guidline.Rmd’ using rmarkdown DMC package:ream R Documentation _<08>D_<08>i_<08>f_<08>f_<08>u_<08>s_<08>i_<08>o_<08>n _<08>M_<08>o_<08>d_<08>e_<08>l _<08>f_<08>o_<08>r _<08>C_<08>o_<08>n_<08>f_<08>l_<08>i_<08>c_<08>t _<08>T_<08>a_<08>s_<08>k_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by v(x,t) = s*A*exp(-t/tau)*[e*t/(tau*(alpha-1))]^{alpha-1}*[(alpha-1)/t - 1/tau] + mu_c. _<08>U_<08>s_<08>a_<08>g_<08>e: dDMC(rt, resp, phi, x_res = "default", t_res = "default") pDMC(rt, resp, phi, x_res = "default", t_res = "default") rDMC(n, phi, dt = 1e-05) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: rt: vector of response times resp: vector of responses ("upper" and "lower") phi: parameter vector in the following order: 1. Non-decision time (t_{nd}). Time for non-decision processes such as stimulus encoding and response execution. Total decision time t is the sum of the decision and non-decision times. 2. Relative start (w). Sets the start point of accumulation as a ratio of the two decision thresholds. Related to the absolute start z point via equation z = b_l + w*(b_u - b_l). 3. Coherence parameter (s). Sets stimulus coherence. If s = 1, coherent condition; if s = 0, neutral condition; if s = -1, incoherent condition. 4. Automatic process amplitude (A). Max value of automatic process. 5. Scale parameter (tau). Contributes to time automatic process. Time to max t_{max} = (alpha – 1)*tau. 6. Shape parameter (alpha). Indicates the shape of the automatic process. Must have value more than 1 (alpha > 1). 7. Drift rate of the controlled process (mu_c). 8. Noise scale (sigma). Model noise scale parameter. 9. Decision thresholds (b). Sets the location of each decision threshold. The upper threshold b_u is above 0 and the lower threshold b_l is below 0 such that b_u = -b_l = b. The threshold separation a = 2b. 10. Contamination (g). Sets the strength of the contamination process. Contamination process is a uniform distribution f_c(t) where f_c(t) = 1/(g_u-g_l) if g_l <= t <= g_u and f_c(t) = 0 if t < g_l or t > g_u. It is combined with PDF f_i(t) to give the final combined distribution f_{i,c}(t) = g*f_c(t) + (1-g)*f_i(t), which is then output by the program. If g = 0, it just outputs f_i(t). 11. Lower bound of contamination distribution (g_l). See parameter g. 12. Upper bound of contamination distribution (g_u). See parameter g. x_res: spatial/evidence resolution t_res: time resolution n: number of samples dt: step size of time. We recommend 0.00001 (1e-5) _<08>V_<08>a_<08>l_<08>u_<08>e: For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp). _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Raphael Hartmann & Matthew Murrow _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. _Cognitive psychology, 78_, 148-174. _<08>E_<08>x_<08>a_<08>m_<08>p_<08>l_<08>e_<08>s: # Probability density function dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Cumulative distribution function pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Random sampling rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) *** caught illegal operation *** address 0x1104187c4, cause 'illegal opcode' Traceback: 1: rDMC(n = 10, phi = c(0.3, 0.5, -1, 0.2, 0.05, 2.5, 3, 1, 0.5, 0, 0, 1), dt = 1e-04) 2: eval(expr, envir, enclos) 3: eval(expr, envir, enclos) 4: eval_with_user_handlers(expr, envir, enclos, user_handlers) 5: withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)) 6: withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler) 7: handle(ev <- withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler)) 8: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler))) 9: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos, debug = debug, last = i == length(out), use_try = stop_on_error != 2L, keep_warning = keep_warning, keep_message = keep_message, log_echo = log_echo, log_warning = log_warning, output_handler = output_handler, include_timing = include_timing) 10: evaluate::evaluate(...) 11: evaluate(code, envir = env, new_device = FALSE, keep_warning = if (is.numeric(options$warning)) TRUE else options$warning, keep_message = if (is.numeric(options$message)) TRUE else options$message, stop_on_error = if (is.numeric(options$error)) options$error else { if (options$error && options$include) 0L else 2L }, output_handler = knit_handlers(options$render, options)) 12: in_dir(input_dir(), expr) 13: in_input_dir(evaluate(code, envir = env, new_device = FALSE, keep_warning = if (is.numeric(options$warning)) TRUE else options$warning, keep_message = if (is.numeric(options$message)) TRUE else options$message, stop_on_error = if (is.numeric(options$error)) options$error else { if (options$error && options$include) 0L else 2L }, output_handler = knit_handlers(options$render, options))) 14: eng_r(options) 15: block_exec(params) 16: call_block(x) 17: process_group(group) 18: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group), error = function(e) if (xfun::pkg_available("rlang", "1.0.0")) rlang::entrace(e)) 19: xfun:::handle_error(withCallingHandlers(if (tangle) process_tangle(group) else process_group(group), error = function(e) if (xfun::pkg_available("rlang", "1.0.0")) rlang::entrace(e)), function(loc) { setwd(wd) write_utf8(res, output %n% stdout()) paste0("\nQuitting from lines ", loc) }, if (labels[i] != "") sprintf(" [%s]", labels[i]), get_loc) 20: process_file(text, output) 21: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet) 22: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(), output_dir = getwd(), ...) 23: vweave_rmarkdown(...) 24: engine$weave(file, quiet = quiet, encoding = enc) 25: doTryCatch(return(expr), name, parentenv, handler) 26: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27: tryCatchList(expr, classes, parentenv, handlers) 28: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))}) 29: tools::buildVignettes(dir = "/Volumes/Builds/packages/big-sur-x86_64/results/4.4/ream.Rcheck/vign_test/ream", skip = TRUE, ser_elibs = "/var/folders/2b/t0kwbtmn3p7brv2mvx39c9cr0000gn/T//RtmpBxf2qF/file13649467d3d88.rds") An irrecoverable exception occurred. R is aborting now ... Flavor: r-release-macos-x86_64

Version: 1.0-1
Check: running R code from vignettes
Result: ERROR Errors in running code in vignettes: when running code in ‘guidline.Rmd’ ... # Random sampling rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) > (samp <- rDMC(n = 10, phi = c(0.3, 0.5, -1, 0.2, 0.05, + 2.5, 3, 1, 0.5, 0, 0, 1), dt = 1e-04)) ... incomplete output. Crash? ‘guidline.Rmd’ using ‘UTF-8’... failed to complete the test Flavor: r-oldrel-macos-arm64

Version: 1.0-1
Check: re-building of vignette outputs
Result: NOTE Error(s) in re-building vignettes: --- re-building ‘guidline.Rmd’ using rmarkdown DMC package:ream R Documentation _<08>D_<08>i_<08>f_<08>f_<08>u_<08>s_<08>i_<08>o_<08>n _<08>M_<08>o_<08>d_<08>e_<08>l _<08>f_<08>o_<08>r _<08>C_<08>o_<08>n_<08>f_<08>l_<08>i_<08>c_<08>t _<08>T_<08>a_<08>s_<08>k_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by v(x,t) = s*A*exp(-t/tau)*[e*t/(tau*(alpha-1))]^{alpha-1}*[(alpha-1)/t - 1/tau] + mu_c. _<08>U_<08>s_<08>a_<08>g_<08>e: dDMC(rt, resp, phi, x_res = "default", t_res = "default") pDMC(rt, resp, phi, x_res = "default", t_res = "default") rDMC(n, phi, dt = 1e-05) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: rt: vector of response times resp: vector of responses ("upper" and "lower") phi: parameter vector in the following order: 1. Non-decision time (t_{nd}). Time for non-decision processes such as stimulus encoding and response execution. Total decision time t is the sum of the decision and non-decision times. 2. Relative start (w). Sets the start point of accumulation as a ratio of the two decision thresholds. Related to the absolute start z point via equation z = b_l + w*(b_u - b_l). 3. Coherence parameter (s). Sets stimulus coherence. If s = 1, coherent condition; if s = 0, neutral condition; if s = -1, incoherent condition. 4. Automatic process amplitude (A). Max value of automatic process. 5. Scale parameter (tau). Contributes to time automatic process. Time to max t_{max} = (alpha – 1)*tau. 6. Shape parameter (alpha). Indicates the shape of the automatic process. Must have value more than 1 (alpha > 1). 7. Drift rate of the controlled process (mu_c). 8. Noise scale (sigma). Model noise scale parameter. 9. Decision thresholds (b). Sets the location of each decision threshold. The upper threshold b_u is above 0 and the lower threshold b_l is below 0 such that b_u = -b_l = b. The threshold separation a = 2b. 10. Contamination (g). Sets the strength of the contamination process. Contamination process is a uniform distribution f_c(t) where f_c(t) = 1/(g_u-g_l) if g_l <= t <= g_u and f_c(t) = 0 if t < g_l or t > g_u. It is combined with PDF f_i(t) to give the final combined distribution f_{i,c}(t) = g*f_c(t) + (1-g)*f_i(t), which is then output by the program. If g = 0, it just outputs f_i(t). 11. Lower bound of contamination distribution (g_l). See parameter g. 12. Upper bound of contamination distribution (g_u). See parameter g. x_res: spatial/evidence resolution t_res: time resolution n: number of samples dt: step size of time. We recommend 0.00001 (1e-5) _<08>V_<08>a_<08>l_<08>u_<08>e: For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp). _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Raphael Hartmann & Matthew Murrow _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. _Cognitive psychology, 78_, 148-174. _<08>E_<08>x_<08>a_<08>m_<08>p_<08>l_<08>e_<08>s: # Probability density function dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Cumulative distribution function pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Random sampling rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) Flavor: r-oldrel-macos-arm64

Version: 1.0-1
Check: examples
Result: ERROR Running examples in ‘ream-Ex.R’ failed The error most likely occurred in: > ### Name: CDSTP > ### Title: Continuous Dual-Stage Two-Phase Model of Selective Attention > ### Aliases: CDSTP dCDSTP pCDSTP rCDSTP > > ### ** Examples > > # Probability density function > dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), + phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3, 0.0, 0.0, 1.0)) *** caught illegal operation *** address 0x10c5687c4, cause 'illegal opcode' Traceback: 1: dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, 0.5, -0.5, -1, -0.5, 8, 4, 1, 2, 1.3, 1.3, 0, 0, 1)) An irrecoverable exception occurred. R is aborting now ... Flavor: r-oldrel-macos-x86_64

Version: 1.0-1
Check: running R code from vignettes
Result: ERROR Errors in running code in vignettes: when running code in ‘guidline.Rmd’ ... 4: withVisible(eval(ei, envir)) 5: source(output, echo = TRUE) 6: doTryCatch(return(expr), name, parentenv, handler) 7: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8: tryCatchList(expr, classes, parentenv, handlers) 9: tryCatch({ source(output, echo = TRUE)}, error = function(e) { cat("\n When sourcing ", sQuote(output), ":\n", sep = "") stop(conditionMessage(e), call. = FALSE, domain = NA)}) 10: tools:::.run_one_vignette("guidline.Rmd", "/Volumes/Builds/packages/big-sur-x86_64/results/4.3/ream.Rcheck/00_pkg_src/ream/vignettes", encoding = "UTF-8", pkgdir = "/Volumes/Builds/packages/big-sur-x86_64/results/4.3/ream.Rcheck/00_pkg_src/ream") An irrecoverable exception occurred. R is aborting now ... ... incomplete output. Crash? ‘guidline.Rmd’ using ‘UTF-8’... failed to complete the test Flavor: r-oldrel-macos-x86_64

Version: 1.0-1
Check: re-building of vignette outputs
Result: NOTE Error(s) in re-building vignettes: --- re-building ‘guidline.Rmd’ using rmarkdown DMC package:ream R Documentation _<08>D_<08>i_<08>f_<08>f_<08>u_<08>s_<08>i_<08>o_<08>n _<08>M_<08>o_<08>d_<08>e_<08>l _<08>f_<08>o_<08>r _<08>C_<08>o_<08>n_<08>f_<08>l_<08>i_<08>c_<08>t _<08>T_<08>a_<08>s_<08>k_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by v(x,t) = s*A*exp(-t/tau)*[e*t/(tau*(alpha-1))]^{alpha-1}*[(alpha-1)/t - 1/tau] + mu_c. _<08>U_<08>s_<08>a_<08>g_<08>e: dDMC(rt, resp, phi, x_res = "default", t_res = "default") pDMC(rt, resp, phi, x_res = "default", t_res = "default") rDMC(n, phi, dt = 1e-05) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: rt: vector of response times resp: vector of responses ("upper" and "lower") phi: parameter vector in the following order: 1. Non-decision time (t_{nd}). Time for non-decision processes such as stimulus encoding and response execution. Total decision time t is the sum of the decision and non-decision times. 2. Relative start (w). Sets the start point of accumulation as a ratio of the two decision thresholds. Related to the absolute start z point via equation z = b_l + w*(b_u - b_l). 3. Coherence parameter (s). Sets stimulus coherence. If s = 1, coherent condition; if s = 0, neutral condition; if s = -1, incoherent condition. 4. Automatic process amplitude (A). Max value of automatic process. 5. Scale parameter (tau). Contributes to time automatic process. Time to max t_{max} = (alpha – 1)*tau. 6. Shape parameter (alpha). Indicates the shape of the automatic process. Must have value more than 1 (alpha > 1). 7. Drift rate of the controlled process (mu_c). 8. Noise scale (sigma). Model noise scale parameter. 9. Decision thresholds (b). Sets the location of each decision threshold. The upper threshold b_u is above 0 and the lower threshold b_l is below 0 such that b_u = -b_l = b. The threshold separation a = 2b. 10. Contamination (g). Sets the strength of the contamination process. Contamination process is a uniform distribution f_c(t) where f_c(t) = 1/(g_u-g_l) if g_l <= t <= g_u and f_c(t) = 0 if t < g_l or t > g_u. It is combined with PDF f_i(t) to give the final combined distribution f_{i,c}(t) = g*f_c(t) + (1-g)*f_i(t), which is then output by the program. If g = 0, it just outputs f_i(t). 11. Lower bound of contamination distribution (g_l). See parameter g. 12. Upper bound of contamination distribution (g_u). See parameter g. x_res: spatial/evidence resolution t_res: time resolution n: number of samples dt: step size of time. We recommend 0.00001 (1e-5) _<08>V_<08>a_<08>l_<08>u_<08>e: For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp). _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Raphael Hartmann & Matthew Murrow _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. _Cognitive psychology, 78_, 148-174. _<08>E_<08>x_<08>a_<08>m_<08>p_<08>l_<08>e_<08>s: # Probability density function dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Cumulative distribution function pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"), phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) # Random sampling rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0)) *** caught illegal operation *** address 0x1077f07c4, cause 'illegal opcode' Traceback: 1: rDMC(n = 10, phi = c(0.3, 0.5, -1, 0.2, 0.05, 2.5, 3, 1, 0.5, 0, 0, 1), dt = 1e-04) 2: eval(expr, envir, enclos) 3: eval(expr, envir, enclos) 4: eval_with_user_handlers(expr, envir, enclos, user_handlers) 5: withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)) 6: withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler) 7: handle(ev <- withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler)) 8: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval_with_user_handlers(expr, envir, enclos, user_handlers)), warning = wHandler, error = eHandler, message = mHandler))) 9: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos, debug = debug, last = i == length(out), use_try = stop_on_error != 2L, keep_warning = keep_warning, keep_message = keep_message, log_echo = log_echo, log_warning = log_warning, output_handler = output_handler, include_timing = include_timing) 10: evaluate::evaluate(...) 11: evaluate(code, envir = env, new_device = FALSE, keep_warning = if (is.numeric(options$warning)) TRUE else options$warning, keep_message = if (is.numeric(options$message)) TRUE else options$message, stop_on_error = if (is.numeric(options$error)) options$error else { if (options$error && options$include) 0L else 2L }, output_handler = knit_handlers(options$render, options)) 12: in_dir(input_dir(), expr) 13: in_input_dir(evaluate(code, envir = env, new_device = FALSE, keep_warning = if (is.numeric(options$warning)) TRUE else options$warning, keep_message = if (is.numeric(options$message)) TRUE else options$message, stop_on_error = if (is.numeric(options$error)) options$error else { if (options$error && options$include) 0L else 2L }, output_handler = knit_handlers(options$render, options))) 14: eng_r(options) 15: block_exec(params) 16: call_block(x) 17: process_group(group) 18: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group), error = function(e) if (xfun::pkg_available("rlang", "1.0.0")) rlang::entrace(e)) 19: xfun:::handle_error(withCallingHandlers(if (tangle) process_tangle(group) else process_group(group), error = function(e) if (xfun::pkg_available("rlang", "1.0.0")) rlang::entrace(e)), function(loc) { setwd(wd) write_utf8(res, output %n% stdout()) paste0("\nQuitting from lines ", loc) }, if (labels[i] != "") sprintf(" [%s]", labels[i]), get_loc) 20: process_file(text, output) 21: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet) 22: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(), output_dir = getwd(), ...) 23: vweave_rmarkdown(...) 24: engine$weave(file, quiet = quiet, encoding = enc) 25: doTryCatch(return(expr), name, parentenv, handler) 26: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27: tryCatchList(expr, classes, parentenv, handlers) 28: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } outputs <- c(outputs, output)}, error = function(e) { thisOK <<- FALSE fails <<- c(fails, file) message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e)))}) 29: tools::buildVignettes(dir = "/Volumes/Builds/packages/big-sur-x86_64/results/4.3/ream.Rcheck/vign_test/ream", skip = TRUE, ser_elibs = "/var/folders/2b/t0kwbtmn3p7brv2mvx39c9cr0000gn/T//Rtmp2uIaac/file166d659bd8d4.rds") An irrecoverable exception occurred. R is aborting now ... Flavor: r-oldrel-macos-x86_64