CRAN Package Check Results for Package tabnet

Last updated on 2025-04-01 07:55:09 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.6.0 11.10 267.75 278.85 ERROR
r-devel-linux-x86_64-debian-gcc 0.6.0 8.34 235.25 243.59 ERROR
r-devel-linux-x86_64-fedora-clang 0.6.0 385.90 ERROR
r-devel-linux-x86_64-fedora-gcc 0.6.0 381.70 ERROR
r-devel-macos-arm64 0.6.0 58.00 OK
r-devel-macos-x86_64 0.6.0 95.00 OK
r-devel-windows-x86_64 0.6.0 13.00 172.00 185.00 ERROR
r-patched-linux-x86_64 0.6.0 11.70 252.91 264.61 ERROR
r-release-linux-x86_64 0.6.0 10.68 265.25 275.93 OK
r-release-macos-arm64 0.6.0 70.00 OK
r-release-macos-x86_64 0.6.0 141.00 OK
r-release-windows-x86_64 0.6.0 12.00 182.00 194.00 OK
r-oldrel-macos-arm64 0.6.0 OK
r-oldrel-macos-x86_64 0.6.0 92.00 OK
r-oldrel-windows-x86_64 0.6.0 18.00 228.00 246.00 OK

Check Details

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed autoplot.tabnet_explain 34.746 1.043 39.460 autoplot.tabnet_fit 28.226 0.313 26.878 tabnet_fit 28.093 0.204 32.027 tabnet 12.886 0.227 13.921 tabnet_explain 11.960 0.070 13.601 Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed autoplot.tabnet_explain 33.968 0.559 30.155 tabnet_fit 27.853 0.084 27.950 autoplot.tabnet_fit 23.155 0.100 17.800 tabnet_explain 16.273 0.080 10.693 tabnet 11.154 0.159 8.584 Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed autoplot.tabnet_explain 33.423 0.777 38.922 tabnet_fit 27.824 0.206 33.619 autoplot.tabnet_fit 23.950 0.255 23.688 tabnet 14.221 0.241 14.505 tabnet_explain 12.072 0.124 13.494 Flavor: r-patched-linux-x86_64